Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 41(1): 87, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260183

RESUMO

BACKGROUND: Epigenetic regulations frequently appear in Glioblastoma (GBM) and are highly associated with metabolic alterations. Especially, Histone deacetylases (HDACs) correlates with the regulation of tumorigenesis and cell metabolism in GBM progression, and HDAC inhibitors report to have therapeutic efficacy in GBM and other neurological diseases; however, GBM prevention and therapy by HDAC inhibition lacks a mechanism in the focus of metabolic reprogramming. METHODS: HDAC2 highly express in GBM and is analyzed in TCGA/GEPIA databases. Therefore, HDAC2 knockdown affects GBM cell death. Analysis of RNA sequencing and qRT-PCR reveals that miR-3189 increases and GLUT3 decreases by HDAC2 knockdown. GBM tumorigenesis also examines by using in vivo orthotopic xenograft tumor models. The metabolism change in HDAC2 knockdown GBM cells measures by glucose uptake, lactate production, and OCR/ECAR analysis, indicating that HDAC2 knockdown induces GBM cell death by inhibiting GLUT3. RESULTS: Notably, GLUT3 was suppressed by increasing miR-3189, demonstrating that miR-3189-mediated GLUT3 inhibition shows an anti-tumorigenic effect and cell death by regulating glucose metabolism in HDAC2 knockdown GBM. CONCLUSIONS: Our findings will demonstrate the central role of HDAC2 in GBM tumorigenesis through the reprogramming of glucose metabolism by controlling miR-3189-inhibited GLUT3 expression, providing a potential new therapeutic strategy for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Transportador de Glucose Tipo 3 , MicroRNAs , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glucose , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , MicroRNAs/metabolismo
2.
Cancers (Basel) ; 13(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073371

RESUMO

Tamoxifen is widely used as a medication for estrogen receptor α (ERα)-positive breast cancer, despite the ~50% incidence of tamoxifen resistance. To overcome such resistance, combining tamoxifen with other agents is considered an effective approach. Here, through in vitro studies with ER-positive MCF7 cells and ER-negative MDA-MB-231 cells, validated by the use of xenograft mice, we investigated the potential of tumor necrosis factor α (TNFα) to enhance tamoxifen sensitivity and identified NCOR1 as a key downstream regulator. TNFα specifically degraded nuclear receptor corepressor 1 (NCOR1) in MCF7 cells. Moreover, knockdown of NCOR1, similar to TNFα treatment, suppressed cancer cell growth and promoted apoptosis only in MCF7 cells and MCF7 xenograft mice through the stabilization of p53, a tumor suppressor protein. Interestingly, NCOR1 knockdown with TNFα treatment increased the occupancy of p53 at the p21 promoter, while decreasing that of ERα. Notably, NCOR1 formed a complex with p53 and ERα, which was disrupted by TNFα. Finally, combinatorial treatment with tamoxifen, TNFα and short-hairpin (sh)-NCOR1 resulted in enhanced suppression of tumor growth in MCF7 xenograft mice compared to single tamoxifen treatment. In conclusion, TNFα promoted tamoxifen sensitivity through the dissociation of the ERα-p53-NCOR1 complex, pointing at NCOR1 as a putative therapeutic target for overcoming tamoxifen resistance in ERα-positive breast cancer.

3.
Biology (Basel) ; 9(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605257

RESUMO

Transforming growth factor-ß1 (TGF-ß1) is highly expressed in the tumor microenvironment and known to play a multifunctional role in cancer progression. In addition, TGF-ß1 promotes metastasis by inducing epithelial-mesenchymal transition (EMT) in a variety of tumors. Thus, inhibition of TGF-ß1 is considered an important strategy in the treatment of cancer. In most tumors, TGF-ß1 signal transduction exhibits modified or non-functional characteristics, and TGF-ß1 inhibitors have various inhibitory effects on cancer cells. Currently, many studies are being conducted to develop TGF-ß1 inhibitors from non-toxic natural compounds. We aimed to develop a new TGF-ß1 inhibitor to suppress EMT in cancer cells. As a result, improved chalcone-like chain CTI-82 was identified, and its effect was confirmed in vitro. We showed that CTI-82 blocked TGF-ß1-induced EMT by inhibiting the cell migration and metastasis of A549 lung cancer cells. In addition, CTI-82 reduced the TGF-ß1-induced phosphorylation of SMAD2/3 and inhibited the expression of various EMT markers. Our results suggest that CTI-82 inhibits tumor growth, migration, and metastasis.

4.
Cells ; 9(5)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455774

RESUMO

Tumor necrosis factor-α (TNF-α) plays a significant role in inflammation and cancer-related apoptosis. We identified a TNF-α-mediated epigenetic mechanism of apoptotic cell death regulation in estrogen receptor-α (ERα)-positive human breast cancer cells. To assess the apoptotic effect of TNF-α, annexin V/ propidium iodide (PI) double staining, cell viability assays, and Western blotting were performed. To elucidate this mechanism, histone deacetylase (HDAC) activity assay and immunoprecipitation (IP) were conducted; the mechanism was subsequently confirmed through chromatin IP (ChIP) assays. Finally, we assessed HDAC3-ERα-mediated apoptotic cell death after TNF-α treatment in ERα-positive human breast cancer (MCF-7) cells via the transcriptional activation of p53 target genes using luciferase assay and quantitative reverse transcription PCR. The TNF-α-induced selective apoptosis in MCF-7 cells was negatively regulated by the HDAC3-ERα complex in a caspase-7-dependent manner. HDAC3 possessed a p53-binding element, thus suppressing the transcriptional activity of its target genes. In contrast, MCF-7 cell treatment with TNF-α led to dissociation of the HDAC3-ERα complex and substitution of the occupancy on the promoter by the p53-p300 complex, thus accelerating p53 target gene expression. In this process, p53 stabilization was accompanied by its acetylation. This study showed that p53-mediated apoptosis in ERα-positive human breast cancer cells was negatively regulated by HDAC3-ERα in a caspase-7-dependent manner. Therefore, these proteins have potential application in therapeutic strategies.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Histona Desacetilases/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Caspase 7/metabolismo , Proteína p300 Associada a E1A/metabolismo , Feminino , Humanos , Células MCF-7 , Regiões Promotoras Genéticas , Estabilidade Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
J Med Food ; 22(11): 1136-1145, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31674887

RESUMO

Polyacetylenes in the bark of Dendropanax morbifera trees have been reported to promote immune cell proliferation and to strengthen the innate immune system. The immunomodulatory potential of D. morbifera branch water extract (DBW) was evaluated by determining its effect on cell viability and the expression of cytokines and immune effector molecules in mouse RAW264.7 macrophages and splenocytes. Production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (interleukin [IL]-1ß, IL-2, and IFN-γ) in RAW264.7 macrophages increased after treatment with DBW. The activation of components of the NF-κB signaling pathway, including the phospho-IκBα and the expression and translocation of p65, a subunit of NF-κB, were also increased in RAW264.7 mouse macrophage cells after treatment with DBW. In addition, when mice were orally administered DBW, splenocyte cytokines and NO production were increased in a dose-dependent manner relative to control-treated mice. Furthermore, natural killer cell activity in DBW-treated mice was determined by lactate dehydrogenase (LDH) release assay. LDH release also increased in response to DBW treatment. Taken together, these results indicate that D. morbifera extract enhances innate immunity by promoting NF-κB signaling, leading to increased expression of proinflammatory cytokines and effector molecules. DBW therefore has potential therapeutic use in the context of immune stimulation.


Assuntos
Adjuvantes Imunológicos/farmacologia , Araliaceae/química , Macrófagos/imunologia , Extratos Vegetais/farmacologia , Polímero Poliacetilênico/farmacologia , Baço/citologia , Animais , Citocinas/metabolismo , Imunidade Inata , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Casca de Planta/química , Folhas de Planta/química , Células RAW 264.7 , Transdução de Sinais , Baço/efeitos dos fármacos , Baço/imunologia
6.
Cells ; 8(8)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430896

RESUMO

Breast cancer is one of the leading causes of morbidity and mortality among women. Epidermal growth factor receptor (EGFR) and proto-oncogene tyrosine-protein kinase Src (c-Src) are critical components of the signaling pathways that are associated with breast cancer. However, the regulatory mechanism of histone deacetylase 3 (HDAC3) in these pathways remains unclear. Using the Net Phos 3.1 program for the analysis of kinase consensus motifs, we found two c-Src-mediated putative phosphorylation sites, tyrosine (Tyr, Y)-328 and Y331 on HDAC3, and generated a phospho-specific HDAC3 antibody against these sites. c-Src-mediated phosphorylation was observed in the cells expressing wild-type HDAC3 (HDAC3WT), but not in cells overexpressing phosphorylation-defective HDAC3 (HDAC3Y328/331A). Phosphorylated HDAC3 showed relatively higher deacetylase activity, and PP2, which is a c-Src inhibitor, blocked HDAC3 phosphorylation and reduced its enzymatic activity. EGF treatment resulted in HDAC3 phosphorylation in both MDA-MB-231 and EGFR-overexpressing MCF7 (MCF7-EGFR) cells, but not in MCF7 cells. Total internal reflection fluorescence analysis showed that HDAC3 was recruited to the plasma membrane following EGF stimulation. HDAC3 inhibition with either c-Src knockdown or PP2 treatment significantly ameliorated the invasiveness of breast cancer cells. Altogether, our findings reveal an EGF signaling cascade involving EGFR, c-Src, and HDAC3 in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Histona Desacetilases/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia , Receptores ErbB/fisiologia , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proto-Oncogene Mas , Transdução de Sinais
7.
J Pineal Res ; 66(3): e12556, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30648757

RESUMO

Glioblastoma (GBM) is the most aggressive malignant glioma and most lethal form of human brain cancer (Clin J Oncol Nurs. 2016;20:S2). GBM is also one of the most expensive and difficult cancers to treat by the surgical resection, local radiotherapy, and temozolomide (TMZ) and still remains an incurable disease. Oncomine platform analysis and Gene Expression Profiling Interactive Analysis (GEPIA) show that the expression of transcription factor EB (TFEB) was significantly increased in GBMs and in GBM patients above stage IV. TFEB requires the oligomerization and localization to regulate transcription in the nucleus. Also, the expression and oligomerization of TFEB proteins contribute to the resistance of GBM cells to conventional chemotherapeutic agents such as TMZ. Thus, we investigated whether the combination of vorinostat and melatonin could overcome the effects of TFEB and induce apoptosis in GBM cells and glioma cancer stem cells (GSCs). The downregulation of TFEB and oligomerization by vorinostat and melatonin increased the expression of apoptosis-related genes and activated the apoptotic cell death process. Significantly, the inhibition of TFEB expression dramatically decreased GSC tumor-sphere formation and size. The inhibitory effect of co-treatment resulted in decreased proliferation of GSCs and induced the expression of cleaved PARP and p-γH2AX. Taken together, our results definitely demonstrate that TFEB expression contributes to enhanced resistance of GBMs to chemotherapy and that vorinostat- and melatonin-activated apoptosis signaling in GBM cells by inhibiting TFEB expression and oligomerization, suggesting that co-treatment of vorinostat and melatonin may be an effective therapeutic strategy for human brain cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Melatonina/farmacologia , Camundongos , Camundongos Nus , Polimerização/efeitos dos fármacos , Vorinostat/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Cell Biochem ; 120(1): 977-987, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216515

RESUMO

Transforming growth factor ß1 (TGF-ß1), a multifunctional cytokine, is known to promote tumor invasion and metastasis and induce epithelial-mesenchymal transition (EMT) in various cancer cells. Inhibition of TGF-ß1 signaling is a new strategy for cancer therapy. Most cancer cells display altered or nonfunctional TGF-ß1 signaling; hence, TGF-ß1 inhibitors exert limited effects on these cells. Recent studies have suggested that developing a TGF-ß1 inhibitor from natural compounds is a key step to create novel therapeutic agents. This study aimed to develop a new anti-TGF-ß1 therapy for cancer. We found an improved analog of chalcones, compound 67, and investigated its effects in vitro. We demonstrated the inhibitory role of compound 67 through migration and invasion assays on TGF-ß1-induced EMT of human A549 lung cancer cells. Compound 67 inhibited TGF-ß1-induced smad2 phosphorylation, suppressed TGF-ß1-induced EMT markers, matrix metalloproteinase-2 (MMP-2) and MMP-9, and inhibited migration and invasion of A549 cells. The study results showed that compound 67 is useful to prevent tumor growth and metastasis.


Assuntos
Chalconas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo , Células A549 , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad2/metabolismo
9.
J Cell Physiol ; 234(3): 2649-2658, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30144069

RESUMO

Although programed cell death 5 (PDCD5) is an important protein in p53-mediated proapoptotic signaling, very little is known about PDCD5-related cell death. In this study, we report that serine/threonine kinase 31 (STK31) interacts with PDCD5, which maintains the stability of PDCD5. STK31 overexpression significantly activated PDCD5 stabilization and p53-mediated apoptosis in response to etoposide (ET). However, STK31 knockdown did not enhance apoptosis by ET treatment. Moreover, when STK31 was depleted, PDCD5 inhibited the activation of the p53 signaling pathway with ET, indicating that the PDCD5-STK31 network has an essential role in p53 activation. Importantly, STK31 activated the p53 signaling pathway by genotoxic stress through positive regulation of PDCD5-mediated apoptosis. We thus demonstrated that overexpression of STK31 greatly inhibited tumorigenic growth and increased the chemosensitivity of HCT116 human colorectal carcinoma cells. Taken together, these findings demonstrate that the STK31-PDCD5 complex network regulates apoptosis of cancer cells, and STK31 is a positive apoptosis regulator that inhibits tumorigenesis of colon cancer cells by inducing PDCD5-mediated apoptosis in response to genotoxic stress.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Etoposídeo/farmacologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Dano ao DNA/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
J Med Food ; 21(8): 793-800, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30048215

RESUMO

Obesity is the most common metabolic disease in developed countries and has become a global epidemic in recent years. Obesity is associated with various metabolic abnormalities, including glucose intolerance, insulin resistance, type 2 diabetes, dyslipidemia, and hypertension. Leaves from the plant Dendropanax morbiferus are beneficial to health as they contain high levels of vitamin C and tannin. There have been seminal studies on the anticancer, antimicrobial, antidiabetes, and antihyperglycemic effects of treatments with D. morbiferus trees. Herein, we investigated the toxicity of D. morbiferus water (DLW) extracts in vitro, and demonstrated no toxicity at 5-500 µg/mL in 24-72-h experiments with 3T3-L1 cells. The DLW increased cell viability at 48 h and inhibited adipogenesis in 3T3-L1 cells by reducing intracellular triglyceride levels and glucose uptake. In addition, mRNA and protein expression levels of adipogenesis-related genes were lowered by DLW, suggesting antiobesity effects in mouse 3T3-L1 cells. Because few studies have demonstrated cholesterol-lowering effects of D. morbiferus, we investigated the activities of adipogenic transcriptional factors following treatments of 3T3-L1 cells with D. morbiferus and observed increased CEBPα, CEBPß, PPARγ, and SREBP1 activities in the cells, indicating that DLW extracts inhibit adipogenesis.


Assuntos
Células 3T3-L1/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Araliaceae , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Células 3T3-L1/metabolismo , Animais , Fármacos Antiobesidade/uso terapêutico , Colesterol/metabolismo , Camundongos , Fitoterapia , Extratos Vegetais/uso terapêutico , Triglicerídeos/metabolismo
11.
Int J Biochem Cell Biol ; 81(Pt A): 76-81, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793752

RESUMO

Cancer cells are characterized by altered metabolic processes. Recent evidence of metabolic alterations has indicated that the fatty acid oxidation (FAO) pathway is used as a carbon source for anabolic processes in some tumors, thus making this pathway a potential target for therapy. The carnitine palmitoyltransferase (CPT; EC 2.3.1.21) enzyme transfers long-chain fatty acids from the cytosol to the mitochondrial matrix for ß-oxidation. Because carnitine palmitoyl transferase 1a (CPT1a) is the rate-limiting enzyme for FAO, the authors evaluated the effects of CPT1A knock-down in BRAF V600E melanoma cell lines. The results showed that knock-down of CPT1A inhibited FAO and that CPT1A is critical for malignant V600E melanoma cells, particularly BRAF V600E melanoma cells. The proliferation and tumorigenesis in V600E melanoma were decrease after CPT1A knockdown. These results suggest that therapy for BRAF V600E melanoma can include targeting metabolic alterations. CPT1A is more important for lipid synthesis in V600E mutant melanoma cells than in wild-type BRAF melanoma cells.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Terapia de Alvo Molecular , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Carcinogênese/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica , Feminino , Técnicas de Silenciamento de Genes , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Oxirredução/efeitos dos fármacos
12.
Oncotarget ; 7(13): 15554-65, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26799284

RESUMO

Radiation-induced fibrosis (RIF) is one of the most common late complications of radiation therapy. We found that α-lipoic acid (α-LA) effectively prevents RIF. In RIF a mouse model, leg contracture assay was used to test the in vivo efficacy of α-LA. α-LA suppressed the expression of pro-fibrotic genes after irradiation, both in vivo and in vitro, and inhibited the up-regulation of TGF-ß1-mediated p300/CBP activity. Thus, α-LA prevents radiation-induced fibrosis (RIF) by inhibiting the transcriptional activity of NF-κB through inhibition of histone acetyltransferase activity. α-LA is a new therapeutic methods that can be used in the prevention-treatment of RIF.


Assuntos
Fibrose/prevenção & controle , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Ácido Tióctico/farmacologia , Animais , Antioxidantes/farmacologia , Fibrose/etiologia , Camundongos , Camundongos Endogâmicos BALB C
13.
Cancer Lett ; 357(1): 419-427, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25499082

RESUMO

Programmed cell death 5 (PDCD5) positively regulates p53-mediated apoptosis and rapidly accumulates upon DNA damage. However, the underlying mechanism of PDCD5 upregulation during the DNA damage response remains unknown. Here, we found that OTU deubiquitinase 5 (OTUD5) was bound to PDCD5 in response to etoposide treatment and increased the stability of PDCD5 by mediating deubiquitination of PDCD5 at Lys-97/98. Overexpression of OTUD5 efficiently enhanced the activation of both PDCD5 and p53. Conversely, PDCD5 knockdown greatly attenuated the effect of OTUD5 on p53 activation. In addition, when OTUD5 was depleted, PDCD5 failed to facilitate p53 activation, demonstrating an essential role for the PDCD5-OTUD5 network in p53 activation. Importantly, we found that OTUD5-dependent PDCD5 stabilization was required for sequential activation of p53 in response to genotoxic stress. The sequential activation of PDCD5 and p53 was abrogated by knockdown of OTUD5. Finally, impairment of the genotoxic stress response upon PDCD5 ablation was substantially rescued by reintroducing PDCD5(WT) but not PDCD5(E94D) (defective for OTUD5 interaction) or PDCD5(E16D) (defective for p53 interaction). Together, our findings have uncovered an apoptotic signaling cascade linking PDCD5, OTUD5, and p53 during genotoxic stress responses.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Colorretais/metabolismo , Endopeptidases/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Estresse Fisiológico/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Dano ao DNA , Endopeptidases/genética , Etoposídeo/farmacologia , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Proteínas de Neoplasias/genética , Transdução de Sinais , Estresse Fisiológico/genética , Ativação Transcricional , Transfecção , Proteína Supressora de Tumor p53/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...